深圳列举网 > 教育培训 > 继续教育 > 知识图谱与语义网历史
深圳
[切换城市]

知识图谱与语义网历史

更新时间:2018-04-19 16:58:18 浏览次数:104次
区域: 深圳 > 南山 > 西丽
地址:深圳市南山区西丽湖丽水路2199号大学城北大园区
知识图谱本质上是一种大规模语义网络。理解知识图谱的概念,有两个关键词。首先是语义网络。语义网络表达了各种各样的实体、概念及其之间的各类语义关联。比如“C罗”是一个实体,“金球奖”也是一个实体,他们俩之间有一个语义关系就是“获得奖项”。“运动员”、“足球运动员”都是概念,后者是前者的子类(对应于图中的subclassof 关系)。理解知识图谱的第二个关键词是“大规模”。语义网络并非新鲜事物,早在上个世纪七八十年代知识工程盛行之时,就已存在。相比较于那个时代的语义网络,知识图谱规模更大。
从2012年Google提出知识图谱直到今天,知识图谱技术发展迅速,知识图谱的内涵远远超越了其作为语义网络的狭义内涵。当下,在更多实际场合下,知识图谱是作为一种技术体系,指代大数据时代知识工程的一系列代表性技术进展的总和。去年我国学科目录做了调整,首次出现了知识图谱的学科方向,教育部对于知识图谱这一学科的定 位是“大规模知识工程”,这一定 位是十分准确且内涵丰富的。这里需要指出的是知识图谱技术的发展是个持续渐进的过程。从上个世纪七八十年代的知识工程兴盛开始,学术界和工业界推出了一系列知识库,直到2012年Google推出了面向互联网搜索的大规模的知识库,被称之为知识图谱。理解今天的知识图谱内涵,是不能割裂其历史脐带的。
知识规模上的量变带来了知识效用的质变。知识工程到了上世纪八十年代之后就销声匿迹了。根本原因在于传统知识库构建主要依靠人工构建、代价高昂、规模有限。举个例子,我国的词林辞海是上万名专家花了10多年编撰而成的,但是它只有十几万词条。而现在任何一个互联网上的知识图谱,比如DBpedia,动辄包含上千万实体。人工构建的知识库虽然质量精良,但是规模有限。有限的规模使得传统知识表示难以适应互联网时代的大规模开放应用的需求。互联网应用的特点在于:一、规模巨大,我们永远不知道用户下一个搜索关键词是什么;二、精度要求相对不高,搜索引擎从来不需要保证每个搜索的理解和检索都是正确的;三、简单知识推理,大部分搜索理解与回答只需要实现简单的推理,比如搜索刘德华推荐歌曲,是因为知道刘德华是歌星,至于“姚明老婆的婆婆的儿子有多高”这类的复杂推理在实际应用中所占比率是不高的。互联网上的这种大规模开放应用所需要的知识很容易突破传统专家系统由专家预设好的知识库的知识边界。这一定程度上回答了,为何谷歌在2012年这个时间节点推出知识图谱,利用一个全新名称以表达与传统知识表示毅然决裂的态度。

大会中文网站:2018.n*** ✚ 大会英文网站:www.h***
原文转载于:2018年届IEEE信息中心网络国际会议
深圳继续教育相关信息
注册时间:2016年10月28日
UID:333923
---------- 认证信息 ----------

查看用户主页